Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.

Identifieur interne : 000223 ( Main/Exploration ); précédent : 000222; suivant : 000224

On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.

Auteurs : Anastasios D. Tsaousis [Royaume-Uni]

Source :

RBID : pubmed:31781051

Abstract

Iron and sulfur are indispensable elements of every living cell, but on their own these elements are toxic and require dedicated machineries for the formation of iron/sulfur (Fe/S) clusters. In eukaryotes, proteins requiring Fe/S clusters (Fe/S proteins) are found in or associated with various organelles including the mitochondrion, endoplasmic reticulum, cytosol, and the nucleus. These proteins are involved in several pathways indispensable for the viability of each living cell including DNA maintenance, protein translation and metabolic pathways. Thus, the formation of Fe/S clusters and their delivery to these proteins has a fundamental role in the functions and the evolution of the eukaryotic cell. Currently, most eukaryotes harbor two (located in cytosol and mitochondrion) or three (located in plastid) machineries for the assembly of Fe/S clusters, but certain anaerobic microbial eukaryotes contain sulfur mobilization (SUF) machineries that were previously thought to be present only in archaeal linages. These machineries could not only stipulate which pathway was present in the last eukaryotic common ancestor (LECA), but they could also provide clues regarding presence of an Fe/S cluster machinery in the proto-eukaryote and evolution of Fe/S cluster assembly machineries in all eukaryotes.

DOI: 10.3389/fmicb.2019.02478
PubMed: 31781051
PubMed Central: PMC6857552


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.</title>
<author>
<name sortKey="Tsaousis, Anastasios D" sort="Tsaousis, Anastasios D" uniqKey="Tsaousis A" first="Anastasios D" last="Tsaousis">Anastasios D. Tsaousis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury</wicri:regionArea>
<wicri:noRegion>Canterbury</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31781051</idno>
<idno type="pmid">31781051</idno>
<idno type="doi">10.3389/fmicb.2019.02478</idno>
<idno type="pmc">PMC6857552</idno>
<idno type="wicri:Area/Main/Corpus">000186</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000186</idno>
<idno type="wicri:Area/Main/Curation">000186</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000186</idno>
<idno type="wicri:Area/Main/Exploration">000186</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.</title>
<author>
<name sortKey="Tsaousis, Anastasios D" sort="Tsaousis, Anastasios D" uniqKey="Tsaousis A" first="Anastasios D" last="Tsaousis">Anastasios D. Tsaousis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury</wicri:regionArea>
<wicri:noRegion>Canterbury</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron and sulfur are indispensable elements of every living cell, but on their own these elements are toxic and require dedicated machineries for the formation of iron/sulfur (Fe/S) clusters. In eukaryotes, proteins requiring Fe/S clusters (Fe/S proteins) are found in or associated with various organelles including the mitochondrion, endoplasmic reticulum, cytosol, and the nucleus. These proteins are involved in several pathways indispensable for the viability of each living cell including DNA maintenance, protein translation and metabolic pathways. Thus, the formation of Fe/S clusters and their delivery to these proteins has a fundamental role in the functions and the evolution of the eukaryotic cell. Currently, most eukaryotes harbor two (located in cytosol and mitochondrion) or three (located in plastid) machineries for the assembly of Fe/S clusters, but certain anaerobic microbial eukaryotes contain sulfur mobilization (SUF) machineries that were previously thought to be present only in archaeal linages. These machineries could not only stipulate which pathway was present in the last eukaryotic common ancestor (LECA), but they could also provide clues regarding presence of an Fe/S cluster machinery in the proto-eukaryote and evolution of Fe/S cluster assembly machineries in all eukaryotes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31781051</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.</ArticleTitle>
<Pagination>
<MedlinePgn>2478</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2019.02478</ELocationID>
<Abstract>
<AbstractText>Iron and sulfur are indispensable elements of every living cell, but on their own these elements are toxic and require dedicated machineries for the formation of iron/sulfur (Fe/S) clusters. In eukaryotes, proteins requiring Fe/S clusters (Fe/S proteins) are found in or associated with various organelles including the mitochondrion, endoplasmic reticulum, cytosol, and the nucleus. These proteins are involved in several pathways indispensable for the viability of each living cell including DNA maintenance, protein translation and metabolic pathways. Thus, the formation of Fe/S clusters and their delivery to these proteins has a fundamental role in the functions and the evolution of the eukaryotic cell. Currently, most eukaryotes harbor two (located in cytosol and mitochondrion) or three (located in plastid) machineries for the assembly of Fe/S clusters, but certain anaerobic microbial eukaryotes contain sulfur mobilization (SUF) machineries that were previously thought to be present only in archaeal linages. These machineries could not only stipulate which pathway was present in the last eukaryotic common ancestor (LECA), but they could also provide clues regarding presence of an Fe/S cluster machinery in the proto-eukaryote and evolution of Fe/S cluster assembly machineries in all eukaryotes.</AbstractText>
<CopyrightInformation>Copyright © 2019 Tsaousis.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsaousis</LastName>
<ForeName>Anastasios D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cytosolic iron/suphur cluster assembly machinery</Keyword>
<Keyword MajorTopicYN="N">eukaryotic evolution</Keyword>
<Keyword MajorTopicYN="N">iron sulfur cluster biogenesis</Keyword>
<Keyword MajorTopicYN="N">iron sulfur cluster machinery</Keyword>
<Keyword MajorTopicYN="N">last eukaryotic common ancestor</Keyword>
<Keyword MajorTopicYN="N">sulfur mobilization machinery</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31781051</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2019.02478</ArticleId>
<ArticleId IdType="pmc">PMC6857552</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2004 Feb 20;4:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15040816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Apr 04;1:16034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Oct 16;9:253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19835607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Mar 13;514(2-3):225-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Aug 11;357(6351):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28798101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2016 Nov 18;14(1):101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27863503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 24;4:259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23898337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Nov 1;35(11):2712-2718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30184127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26840490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12754-12763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2018 Jul 23;28(14):R798-R800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30040943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2018 May;40(5):e1700242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29543982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2018 Dec;34(12):1038-1055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30201278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 30;440(7084):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16572163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10426-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Sep 15;23(6):801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2004 Aug;136(2):199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 23;285(30):23331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20460376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1999 Oct;380(10):1157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10595578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 13;426(6963):172-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14614504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2018 Dec;70(12):1188-1196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30358047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2005 Nov;10(7):713-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Aug 6;18(2):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 May 14;521(7551):169-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25945740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jan 04;8:13932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28051091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Nov;102(4):701-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27582265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Jul 16;4:e08231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26182403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 May 14;521(7551):173-179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25945739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 3;452(7187):624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18311129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Oct 22;14(10):e1007326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30346997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 Feb;16(2):120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29176585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Oct;562(7727):439-443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30283132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2018 Nov;65(6):913-922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29932290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2014 Jan;13(1):143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Parasitol. 2013;83:1-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23876871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2018 Aug 1;10(8):2061-2071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30085124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12744-12753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13080-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16938841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Sep;33(9):2318-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27280585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2017 Jul 25;2:17109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Aug 22;418(6900):865-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 May;557(7703):101-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29695865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Mar 20;27(6):807-820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28262486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2018 Oct;2(10):1556-1562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30127539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Mar;12(3):331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2018 Nov;169(5):744-783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30138782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Dec 26;384(4):798-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18938178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E666</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26811484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 1973 Nov;21(11):955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4148751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 13;337(6091):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 May 23;26(10):1274-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27185558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Jun;32(5):1013-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10361303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25447545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2018 Jun;23(4):521-541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29623424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2016 Sep;38(9):850-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27339178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 16;279(16):16863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14757765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):713-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26323764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jan 19;541(7637):353-358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28077874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2016 Jan 27;283(1823):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26817772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2001;2(6):REVIEWS1018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Mar 29;14(3):e1007080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29596421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2014 May;100:61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 22;453(7194):553-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18449191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Jun 2;24(11):1176-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Oct;562(7727):352-353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30323225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Apr;16(4):218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21257336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Dec 11;290(50):29717-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Mar 5;283(5407):1476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Tsaousis, Anastasios D" sort="Tsaousis, Anastasios D" uniqKey="Tsaousis A" first="Anastasios D" last="Tsaousis">Anastasios D. Tsaousis</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000223 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000223 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31781051
   |texte=   On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31781051" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020